1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
#![no_std]
#![feature(type_alias_impl_trait)]
//! # esp-ward
//!
//! `esp-ward` is a Rust crate designed as a higher-level abstraction over
//! `esp-hal` to simplify the usage of ESP32, ESP32S2, ESP32C3, ESP32C6,
//! ESP32S3, ESP32C2 and ESP32H2 chips with Rust. It provides common APIs, traits, and
//! structs to interact with various peripherals such as GPIOs, I2C, and SPI
//! devices.
//!
//! This crate is targeted at developers new to the `esp-rs` ecosystem or those
//! who prefer a simplified interface for common operations.
//!
//! ## Features
//! - Traits and structs for common peripheral interactions.
//! - Easy configuration of SPI and I2C.
//! - Predefined macros for common operations and setup routines.
//! - Compatible with various ESP32 family chips.
//! - Simplified Wi-Fi and MQTT features
//!
//! ## Usage
//! To use `esp-ward`, include it as a dependency in your `Cargo.toml` and refer
//! to the following examples to start interacting with your ESP device's
//! hardware features.
//!
//! ### Quick Start
//! Here's how you might initialize the system peripherals and configure I2C and
//! SPI with default settings:
//! ```rust
//! use esp_ward::{init_chip, take_periph, take_system};
//!
//! let peripherals = take_periph!();
//! let system = take_system!(peripherals);
//! let (clocks, pins) = init_chip!(peripherals, system);
//! // Now you can use `clocks` and `pins` to interact with the peripherals
//! ```
//!
//! ### Example: Configuring I2C
//! ```rust
//! # #[cfg(feature = "esp32")]
//! use esp_ward::init_i2c_default;
//!
//! let i2c = init_i2c_default!(peripherals, pins, clocks);
//! // Now `i2c` is ready to communicate with I2C devices
//! ```
//!
//! ### Example: Configuring SPI
//! ```rust
//! # #[cfg(feature = "esp32")]
//! use esp_ward::init_spi_default;
//!
//! let spi = init_spi_default!(peripherals, pins, clocks);
//! // Now `spi` is ready to transfer data with SPI devices
//! ```
//!
//! ## Macros
//! This crate also provides several macros to ease the setup and usage of ESP
//! peripherals.
//!
//! ### `take_periph`
//! Takes the peripherals from the ESP board. This is typically one of the first
//! steps in a Rust-ESP application.
//!
//! ### `take_system`
//! Splits the `SYSTEM` peripheral into its constituent parts.
//!
//! ### `init_chip`
//! Initializes the system clocks and IO pins.
//!
//! ### `init_i2c_default` and `init_i2c_custom`
//! Initializes the I2C peripheral with either default or custom configurations.
//!
//! ### `init_spi_default` and `init_spi_custom`
//! Initializes the SPI peripheral with either default or custom configurations.
//!
//! ### `init_wifi`
//! Initializes Wi-Fi connection in async or non-async way - depending on your
//! project
//!
//! and more...
//!
//! ## Contributing
//! Contributions to `esp-ward` are welcome. Check out the repository on GitHub
//! to report issues or submit pull requests.
//!
//! ## License
//! `esp-ward` is distributed under the terms of both the MIT license and the
//! Apache License (Version 2.0).
//!
//! See LICENSE-APACHE and LICENSE-MIT for details.
// Import the necessary modules from `esp-hal`
pub use esp_hal::{
clock::Clocks,
gpio::{InputPin, OutputPin, Pins, IO},
i2c::{Instance as I2cInstance, I2C},
peripheral::Peripheral,
peripherals::Peripherals,
prelude::*,
spi::{
master::{Instance as SpiInstance, Spi},
FullDuplexMode,
SpiMode,
},
};
#[cfg(feature = "wifi")]
pub mod connectivity;
pub mod display;
pub mod peripherals;
/// Takes the ESP peripherals. This should be one of the first steps in an ESP
/// application, ensuring that the peripherals are properly acquired before use.
///
/// # Examples
/// ```no_run
/// let peripherals = esp_ward::take_periph!();
/// ```
#[macro_export]
macro_rules! take_periph {
() => {
esp_hal::peripherals::Peripherals::take()
};
}
/// Splits the `SYSTEM` peripheral into its constituent parts.
/// This macro is a convenience wrapper for quickly accessing system components.
///
/// # Examples
/// ```no_run
/// let peripherals = esp_ward::take_periph!();
/// let system_parts = esp_ward::take_system!(peripherals);
/// ```
#[macro_export]
macro_rules! take_system {
($peripherals:ident) => {
$peripherals.SYSTEM.split()
};
}
/// Initializes the system clocks and IO pins, providing the base setup required
/// for any operation with peripherals.
///
/// Pins are accessible like `pins.gpio2`.
/// # Examples
/// ```no_run
/// let peripherals = esp_ward::take_periph!();
/// let system = esp_ward::take_system!(peripherals);
/// let (clocks, pins, delay) = esp_ward::init_chip!(peripherals, system);
/// ```
#[macro_export]
macro_rules! init_chip {
($peripherals:ident, $system:ident) => {{
use embedded_hal::blocking::delay::{DelayMs, DelayUs};
let clocks = esp_hal::clock::ClockControl::max($system.clock_control).freeze();
let io = esp_hal::gpio::IO::new($peripherals.GPIO, $peripherals.IO_MUX);
let mut delay = esp_hal::delay::Delay::new(&clocks);
// You can directly return the tuple from the macro
(clocks, io.pins, delay)
}};
}
// `init_i2c_default` is defined separately for each chip feature, since
// different chips have different pin layouts. Include
// one of these for each `#[cfg(feature = "...")]` version.
/// Initializes the default I2C configuration for the ESP board.
/// Assumes the use of the standard I2C0 peripheral and "default" pin
/// configuration. The rest of "default" functions
// and macros were desinged in a way to avoid collisions, so you're able
/// # Examples
/// ```no_run
/// let peripherals = esp_ward::take_periph!();
/// let (clocks, pins) = esp_ward::init_chip!(peripherals);
/// let mut i2c = esp_ward::init_i2c_default!(peripherals, pins, clocks);
/// ```
#[macro_export]
macro_rules! init_i2c_default {
($peripherals:ident, $pins:ident, $clocks:ident) => {
esp_hal::i2c::I2C::new(
$peripherals.I2C0,
$pins.gpio6,
$pins.gpio7,
100u32.kHz(),
&$clocks,
)
};
}
/// Initializes a custom I2C configuration, allowing for arbitrary SDA and SCL
/// pins and frequency.
///
/// # Arguments
/// * `$peripherals`: The peripherals instance taken from the board.
/// * `$clocks`: The system clocks initialized beforehand.
/// * `$sda_pin`: The pin to use for SDA.
/// * `$scl_pin`: The pin to use for SCL.
/// * `$freq`: The frequency for I2C communication.
///
/// # Examples
/// ```no_run
/// let peripherals = esp_ward::take_periph!();
/// let system = esp_ward::take_system!(peripherals);
/// let (clocks, pins) = esp_ward::init_chip!(peripherals, system);
/// let mut i2c =
/// esp_ward::init_i2c_custom!(peripherals, &clocks, pins.gpio21, pins.gpio22, 100u32.kHz());
/// ```
#[macro_export]
macro_rules! init_i2c_custom {
($peripherals:ident, $clocks:ident, $sda_pin:expr, $scl_pin:expr, $freq:expr) => {
I2C::new($peripherals.I2C0, $sda_pin, $scl_pin, $freq, &$clocks)
};
}
/// Initializes the default SPI configuration for the chip.
/// Assumes the use of the standard SPI2 peripheral and default pin
/// configuration.
///
/// # Examples
/// ```no_run
/// let peripherals = esp_ward::take_periph!();
/// let (clocks, pins) = esp_ward::init_chip!(peripherals);
/// let spi = esp_ward::init_spi_default!(peripherals, pins, clocks);
/// ```
#[macro_export]
macro_rules! init_spi_default {
($peripherals:ident, $pins:ident, $clocks:ident) => {
esp_hal::spi::master::Spi::new(
$peripherals.SPI2,
100u32.MHz(),
esp_hal::spi::SpiMode::Mode0,
&$clocks,
)
.with_pins(
// SCLK
Some($pins.gpio0),
// MOSI
Some($pins.gpio2),
// MISO
Some($pins.gpio4),
// CS
Some($pins.gpio5),
)
};
}
/// Initializes a custom SPI configuration, allowing for arbitrary CLK, MOSI,
/// MISO, and CS pins and frequency.
///
/// # Arguments
/// * `$peripherals`: The peripherals instance taken from the board.
/// * `$clocks`: The system clocks initialized beforehand.
/// * `$clk`: The pin to use for CLK.
/// * `$mosi`: The pin to use for MOSI.
/// * `$miso`: The pin to use for MISO.
/// * `$cs`: The pin to use for CS.
/// * `$freq`: The frequency for SPI communication.
///
/// # Examples
/// ```no_run
/// let peripherals = esp_ward::take_periph!();
/// let (clocks, pins) = esp_ward::init_chip!(peripherals);
/// let spi = esp_ward::init_spi_custom!(
/// peripherals,
/// clocks,
/// pins.gpio18,
/// pins.gpio23,
/// pins.gpio19,
/// pins.gpio5,
/// 100u32.MHz()
/// );
/// ```
#[macro_export]
macro_rules! init_spi_custom {
($peripherals:ident, $clocks:ident, $clk:expr, $mosi:expr, $miso:expr, $cs:expr, $freq:expr) => {
esp_hal::spi::master::Spi::new(
$peripherals.SPI2,
$freq,
esp_hal::spi::SpiMode::Mode0,
&$clocks,
)
.with_pins($clk, $mosi, $miso, $cs)
};
}
/// Pauses the execution for a specified number of milliseconds using a delay
/// provider.
///
/// # Arguments
/// * `$delay`: The delay provider, typically from a HAL implementation.
/// * `$time`: The number of milliseconds to pause.
///
/// # Examples
/// ```no_run
/// let mut delay = esp_hal::Delay::new();
/// esp_ward::wait!(delay, 1000); // pauses for 1 second
/// ```
#[macro_export]
macro_rules! wait {
($delay:ident, $time:expr) => {
use embedded_hal::blocking::delay::DelayMs;
$delay.delay_ms($time as u32);
};
}
/// Sets up a global allocator for heap memory, required for the `alloc` crate
/// functionalities. This is essential for using heap-allocated data structures
/// which are used, for example, for `max7219` display.
/// ATTENTION: MAKE SURE to use this `prepare_alloc` as a first function in your
/// program if you're using module which utilizes `alloc`. Modules like this
/// will have a warning that you should use the `alloc` feature
///
/// # Safety
/// This macro should be called <b>ONCE AND ONLY ONCE</b> during initialization
/// before using any features that require dynamic memory allocation.
///
/// Concept is taken from esp-alloc: https://github.com/esp-rs/esp-alloc/tree/main
///
/// # Examples
/// ```no_run
/// esp_ward::prepare_alloc!();
/// let v: Vec<u8> = Vec::new(); // Now we can use structs from `alloc`, like `Vec``
/// ```
#[macro_export]
macro_rules! prepare_alloc {
() => {
extern crate alloc;
#[global_allocator]
static ALLOCATOR: esp_alloc::EspHeap = esp_alloc::EspHeap::empty();
const HEAP_SIZE: usize = 32 * 1024;
static mut HEAP: core::mem::MaybeUninit<[u8; HEAP_SIZE]> = core::mem::MaybeUninit::uninit();
unsafe {
ALLOCATOR.init(HEAP.as_mut_ptr() as *mut u8, HEAP_SIZE);
}
};
}